
Identificar índices não
utilizados (ou não eficientes)

with

table_scans as (

select

	tables.relid as relid,

	tables.schemaname as schemaname,

	tables.relname as tablename,

	tables.idx_scan as table_idx_scan_count,

	tables.idx_tup_fetch as table_idx_tup_fetch,

	tables.seq_scan as table_seq_scan_count,

	tables.seq_tup_read as table_seq_tup_read,

	tables.idx_scan + tables.seq_scan as table_sum_all_scans,

	tables.n_tup_ins as table_write_insert_count,

	tables.n_tup_upd as table_write_update_count,

	tables.n_tup_del as table_write_delete_count,

	tables.n_tup_ins + tables.n_tup_upd + tables.n_tup_del as table_sum_all_writes,

	tables.n_tup_hot_upd as table_tup_hot_upd_count,

	tables.n_live_tup as table_live_tup_count,

	pg_relation_size(relid) as table_bytes

from

	pg_stat_user_tables as tables

),

database_writes as (

select

	sum(table_sum_all_writes) as database_sum_all_writes

from

	table_scans

),

indexes as (

select

	idx_stat.relid as relid,

	idx_stat.indexrelid as indexrelid,

	idx_stat.schemaname as schemaname,

	idx_stat.relname as tablename,

	idx_stat.indexrelname as indexname,

	idx_stat.idx_scan as index_idx_scan_count,

	idx_stat.idx_tup_read as index_idx_tup_read,

	idx_stat.idx_tup_fetch as index_idx_tup_fetch,

	pg_relation_size(idx_stat.indexrelid) as index_bytes,

	indexes.indexdef ~* 'USING btree' as idx_is_btree

from

	pg_stat_user_indexes as idx_stat

join pg_index as pg_index

		using (indexrelid)

join pg_indexes as indexes

on

	idx_stat.schemaname = indexes.schemaname

	and idx_stat.relname = indexes.tablename

	and idx_stat.indexrelname = indexes.indexname

where

	pg_index.indisunique = false

),

index_ratios as (

select

	indexes.schemaname as schemaname,

	indexes.tablename as tablename,

	indexes.indexname as indexname,

	indexes.index_idx_scan_count as index_idx_scan_count,

	indexes.index_idx_tup_read as index_idx_tup_read,

	indexes.index_idx_tup_fetch as index_idx_tup_fetch,

	round(case when indexes.index_idx_scan_count = 0 or table_scans.table_live_tup_count = 0

then -1 :: numeric

 else indexes.index_idx_tup_fetch :: numeric / indexes.index_idx_scan_count /

table_scans.table_live_tup_count * 100 end, 2) as idx_pct_table_fetched,

	table_scans.table_idx_scan_count as table_idx_scan_count,

	table_scans.table_seq_scan_count as table_seq_scan_count,

	table_scans.table_seq_tup_read as table_seq_tup_read,

	table_scans.table_sum_all_scans as table_sum_all_scans,

	round((case when table_scans.table_sum_all_scans = 0

then -1 :: numeric

 else indexes.index_idx_scan_count :: numeric / table_scans.table_sum_all_scans * 100 end),

2) as index_scan_pct,

	table_scans.table_write_insert_count as table_write_insert_count,

	table_scans.table_write_update_count as table_write_update_count,

	table_scans.table_write_delete_count as table_write_delete_count,

	table_scans.table_sum_all_writes as table_sum_all_writes,

	round((case when table_scans.table_sum_all_writes = 0

then indexes.index_idx_scan_count :: numeric

 else indexes.index_idx_scan_count :: numeric / table_scans.table_sum_all_writes end), 2)

as scans_per_write,

	table_scans.table_tup_hot_upd_count as table_tup_hot_upd_count,

	table_scans.table_live_tup_count as table_live_tup_count,

	indexes.index_bytes as index_bytes,

	pg_size_pretty(indexes.index_bytes) as index_size,

	table_scans.table_bytes as table_bytes,

	pg_size_pretty(table_scans.table_bytes) as table_size,

	indexes.idx_is_btree as idx_is_btree

from

	indexes

join table_scans

		using (relid)

),

index_groups as (

select

	1 as grp,

	'Never Used Indexes' as reason,

	*

from

	index_ratios

where

	index_ratios.index_idx_scan_count = 0

	and index_ratios.idx_is_btree

union all

select

	2 as grp,

	'Low Scans, High Writes' as reason,

	*

from

	index_ratios

where

	scans_per_write <= 1

	and index_scan_pct < 10

	and index_idx_scan_count > 0

	and table_sum_all_writes > 100

	and idx_is_btree

union all

select

	3 as grp,

	'Seldom Used Large Indexes' as reason,

	*

from

	index_ratios

where

	index_scan_pct < 5

	and scans_per_write > 1

	and index_idx_scan_count > 0

	and idx_is_btree

	and index_bytes > 100000000

union all

select

	4 as grp,

	'High-Write Large Non-Btree' as reason,

	index_ratios.*

from

	index_ratios,

	database_writes

where

	(table_sum_all_writes :: numeric / coalesce(nullif(database_sum_all_writes, 0), 1)) > 0.02

		and not idx_is_btree

		and index_bytes > 100000000

union all

	select

		5 as grp,

		'(+) Sem Efetividade' as reason,

		index_ratios.*

	from

		index_ratios

	where

		idx_is_btree

		and index_idx_scan_count > 0

		and idx_pct_table_fetched > 20

union all

	select

		6 as grp,

		'(+) Índice Médio (100MB a 500MB)' as reason,

		index_ratios.*

	from

		index_ratios

	where

		index_bytes >= 100000000

		and index_bytes < 500000000

union all

	select

		7 as grp,

		'(+) Índice Grande (500MB a 1 GB)' as reason,

		index_ratios.*

	from

		index_ratios

	where

		index_bytes >= 500000000

		and index_bytes < 1000000000

union all

	select

		8 as grp,

		'(+) Índice Enorme (mais de 1 GB)' as reason,

		index_ratios.*

	from

		index_ratios

	where

		index_bytes >= 1000000000

	order by

		grp,

		index_bytes desc

)

select

	reason,

	schemaname,

	tablename,

	indexname,

	table_size,

	index_size

from

	index_groups

Revisão #3
Criado 22 December 2021 17:38:43 por Nicolly Andrielly
Atualizado 23 September 2024 19:52:21 por Nicolly Andrielly

